Deep Learning ทำนายได้ว่าคุณต้องการ Taxi เมื่อไหร่?

คอมพิวเตอร์สามารถที่จะทำนายความต้องการบริการรถแท็กซี่และแบ่งปันเส้นทางในการขับขี่ให้กับเหล่าคนขับแท็กซีได้ดีขึ้น ซึ่งจะปูทางไปสู่ Smart City ที่มีความปลอดภัยและยั่งยืนมากขึ้น

ในการศึกษานักวิจัยใช้ Neural networks  วิเคราะห์รูปแบบความต้องการรถแท็กซี่ ซึ่งการใช้ร่วมกับเทคโนโลยีของ Deep Learning ซึ่งจะช่วยให้คอมพิวเตอร์สามารถที่จะเรียนรู้ด้วยตัวเอง และทำนายรูปแบบความต้องการอย่างมีนัยสำคัญได้ดีกว่าเทคโนโลยีที่มีอยู่ในปัจจุบัน

“บริการอย่าง Uber ในสหรัฐอเมริกา และ Didi Chuxing ในประเทศจีนกำลังได้รับความนิยมมากขึ้นเรื่อย ๆ และเปลี่ยนวิธีการเข้าถึงการขนส่งของเหล่าผู้คนทั่วไป” เจสซี หลี่ รองศาสตราจารย์ด้านเทคโนโลยีสารสนเทศและเทคโนโลยีของ Penn State กล่าวว่า “คุณสามารถจินตนาการได้ว่าการคาดการณ์ความต้องการรถแท็กซี่มีความสำคัญมากเพียงใดเนื่องจากจะช่วยให้บริษัทรถแท็กซี่สามารถจัดส่งรถยนต์ไปถึงลูกค้าได้ก่อนที่ความต้องการจะเกิดขึ้น”

บริการเรียกแท็กซี่ชื่อดังอย่าง Uber และ Didi
บริการเรียกแท็กซี่ชื่อดังอย่าง Uber และ Didi Chuxing

การคาดการณ์ที่ดีขึ้นสามารถลดเวลาที่รถแท็กซี่ไม่ได้ใช้งานต้องมาวิ่งบนถนนโดยเปล่าประโยชน์ และยังมีส่วนลดมลพิษในเมืองได้ดีขึ้น เนื่องจากอุบัติเหตุมักเกิดขึ้นบ่อยครั้งในพื้นที่แออัด เทคโนโลยีการทำนายการขับขี่ที่ดีขึ้นก็สามารถปรับปรุงความปลอดภัยได้เช่นกัน

นักวิจัยวิเคราะห์ชุดข้อมูลขนาดใหญ่ของการร้องขอการขับขี่ไปยัง Didi Chuxing หนึ่งใน บริษัท รถยนต์ที่ใหญ่ที่สุดในประเทศจีนจากข้อมูลของ Huaxiu Yao นักศึกษาปริญญาเอกสาขาวิทยาศาสตร์ข้อมูลและเทคโนโลยี

เมื่อผู้ใช้ต้องการนั่งรถพวกเขาจะทำการร้องขอผ่านทางแอปพลิเคชัน- ตัวอย่างเช่นแอพในโทรศัพท์มือถือ นักวิจัยกล่าวว่าการใช้คำร้องขอขี่เหล่านี้แทนที่จะอาศัยข้อมูลการขี่เพียงอย่างเดียวนั้นสะท้อนความต้องการโดยรวมได้ดีกว่า

ด้วยข้อมูลประวัติซึ่งรวมถึงเวลาและสถานที่ตั้งของการเรียกบริการแท็กซี่ ทำให้สามารถคาดการณ์ความต้องการที่จะมีความเปลี่ยนแปลงอยู่ตลอดเวลา ซึ่งเมื่อเห็นภาพข้อมูลต่าง ๆ บนแผนที่ นักวิจัยสามารถเห็นความต้องการที่เปลี่ยนแปลงไปได้

“ในตอนเช้าคุณจะเห็นว่าในส่วนที่พักอาศัยมีรถปิคอัพมากขึ้นและมีรถไปส่งในตัวเมืองมากขึ้น” หลี่กล่าว “ในตอนเย็นมันกลับด้านสิ่งที่เรากำลังทำอยู่คือการใช้ข้อมูลรถกระบะในอดีตเพื่อคาดการณ์ว่าแผนที่นี้เปลี่ยนไปอย่างไรในอีก 30 นาที หรืออีกชั่วโมงต่อไปเป็นต้น”

ใช้ข้อมูลจากฐานข้อมูลจำนวนมหาศาลจาก Didi Chuxing  มาวิเคราะห์ผ่าน Deep Learning
ใช้ข้อมูลจากฐานข้อมูลจำนวนมหาศาลจาก Didi Chuxing มาวิเคราะห์ผ่าน Deep Learning

นักวิจัยที่นำเสนอสิ่งที่ค้นพบในการประชุม AAAI เมื่อเร็ว ๆ นี้ที่เป็นการประชุมทางด้านวิชาการที่เกี่ยวข้องปัญญาประดิษฐ์ ซึ่งเป็นหนึ่งในการประชุมที่ใหญ่ที่สุดในด้านการวิจัยของ AI

การใช้ข้อมูลเกี่ยวกับการเรียกบริการแท็กซี่ในกวางโจวประเทศจีนตั้งแต่วันที่ 1 กุมภาพันธ์ถึง 26 มีนาคม 2017 ประมาณ 300,000 ครั้งต่อวัน จากการเปรียบเทียบ ในเมืองนิวยอร์กซึ่งมีประมาณ 500,000 ครั้งต่อวัน

ในขณะที่เทคโนโลยีใช้ Neural Network โดยนักวิจัยได้รวมเครือข่ายประสาทสองเครือข่ายซึ่ง ได้แก่ convolutional neural network (CNN) และ  Long Short Term Memory network (LSTM) เพื่อช่วยลำดับการทำนายที่มีความซับซ้อน โดย CNN สามารถสร้างแบบจำลองความสัมพันธ์เชิงพื้นที่ ที่มีความซับซ้อนได้ดียิ่งขึ้น และ LSTM สามารถจัดการกับแบบจำลองตามลำดับได้ดียิ่งขึ้น

“โดยทั่วไปเราใช้ Neural Network ที่มีความซับซ้อนมากๆ ในการจำลองว่าผู้คนย่อยข้อมูลที่เป็นรูปแบบของการจราจรได้อย่างไร” หลี่กล่าว

หลี่กล่าวว่าการเข้าถึงชุดข้อมูลขนาดใหญ่ (Big Data) และความก้าวหน้าในเทคโนโลยีคอมพิวเตอร์ที่สามารถประมวลผลข้อมูลจำนวนมากได้ ซึ่งช่วยให้โครงการนี้สามารถใช้ Deep Learning ในรูปแบบวิธีอื่น ๆ ได้

“ ในการเขียนโปรแกรมคอมพิวเตอร์แบบดั้งเดิมผู้คนจำเป็นต้องบอกคอมพิวเตอร์ว่าใช้ค่าตัวแปรอะไร ซึ่งมันจำเป็นต้องดูจากข้อมูล ณ ขณะนั้น ทำให้ต้องสร้างแบบจำลองซึ่งต้องใช้ความพยายามอย่างมากในการแก้ปัญหาดังกล่าว” หลี่กล่าว “แต่ Deep Learning คือการปฏิวัติที่ทำให้ตอนนี้เราสามารถข้ามขั้นตอนนั้นไปได้ คุณสามารถใส่ข้อมูลภาพจำนวนมหาศาลให้กับคอมพิวเตอร์เพื่อวิเคราะห์ได้ทันที  และไม่จำเป็นต้องบอกคอมพิวเตอร์ว่าต้องมาวิเคราะห์อะไรอีกต่อไป เพราะการพัฒนาของเทคโนโลยี Deep Learning ที่มาช่วยเติมเต็มในส่วนนี้นั่นเอง”

References : 
https://phys.org/news/2018-03-deep-people.html

ติดตาม ด.ดล Blog เพิ่มเติมได้ที่
Fanpage :facebook.com/tharadhol.blog
Blockdit :blockdit.com/tharadhol.blog
Twitter :twitter.com/tharadhol
Instragram :instragram.com/tharadhol

Comments